您的位置:网站首页 > 行业资讯 > 正文

最全机器人焊接知识汇总

作者:admin来源:中国焊接信息网-焊接商 日期:2018-5-30 9:17:39 人气: 标签:

  焊接技术进步的突出的表现就是焊接过程由机械化向自动化、信息化和智能化发展。智能焊接机器人的应用,是焊接过程高度自动化的重要标志。焊接机器人突破了焊自动化的传统方式,使小批量自动化生产成为可能。

  焊接机器人大多为固定位置的手臂式机械,有示教型和智能型两种。

  示教型机器人:通过示教,记忆焊接轨迹及焊接参数,并严格按照示教程序完成产品的焊接。只需一次示教,机器人便可以精确地再现示教的每一步操作。这类焊接机器人的应用较为广泛,适宜于大批量生产,用于流水线的固定工位上,其功能主要是示教再现,对环境变化的应变能力较差。对于大型结构在工地上的小批量生产没有用武之地。

  智能型机器人:可以根据简单的控制指令自动确定焊缝的起点、空间轨迹及有关参数,并能根据实际情况自动跟踪焊缝轨迹、调整焊炬姿态、调整焊接参数、控制焊接质量。这是最先进的焊接机器人,具有灵巧、轻便、容易移动等特点,能适应不同结构、不同地点的焊接任务,目前实际应用很少,尚处在研究开发阶段。

  焊接机器人中,点焊机器人占50%~60%,它由机器人本体、点焊系统和控制系统三大部分组成。机器人本体的自由度为1~5个,控制系统分本体控制和焊接部分控制。

  今天中机机器人小编整理了《机器人弧焊自动化最全知识》,在了解焊接技术的基础上,相信对焊接机器人的了解会更深刻。

  一、弧焊系统组成

  一般的弧焊机器人系统是由以下部分组成:

  l 机器人本体

  l 自动送丝装置

  l 焊接电源系统

  l 机器人控制柜

  l 焊枪

  l 变位机

  l 工装夹具

  系统组成还可根据焊接方法的不同以及具体待焊工件焊接工艺要求的不同等情况,选择性扩展以下装置:

  l 清枪剪丝装置

  l 冷却水箱

  l 焊剂输送和回收装置(SAW时)

  l 移动装置

  l 焊接变位机

  l 传感装置及系统安全保护设施

  l 除尘装置及焊缝检测设备

  以下是一个标准的机器人弧焊工作站

  二、焊接方法

  1、气体保护电弧焊:

  利用氩气作为焊接区域保护气体的氩弧焊、利用二氧化碳作为焊接区域保护气体的二氧化碳保护焊等,均属于气体保护电弧焊。

  其基本原理是在以电弧为热源进行焊接时,同时从喷枪的喷嘴中连续喷出保护气体把空气与焊接区域中的熔化金属隔离开来,以保护电弧和焊接熔池中的液态金属不受大气中的氧、氮、氢等污染,以达到提高焊接质量的目的。

  2、钨极氩弧焊:

  以高熔点的金属钨棒作为焊接时产生电弧的一个电极,并处在氩气保护下的电弧焊,常用于不锈钢、高温合金等要求严格的焊接。

  3、等离子电弧焊:

  由钨极氩弧焊发展起来的一种焊接方法,等离子弧是离子气被电离产生高温离子气流,从喷嘴细孔中喷出,经压缩形成细长的弧柱,高于常规的自由电弧,如:氩弧焊仅达5000-8000K。由于等离子弧具有弧柱细长,能量密度高的特点,因而在焊接领域有着广泛的应用。

  三、气体保护焊

  弧焊机器人多采用气体保护焊方法(MAG、MIG、TIG),通常的晶闸管式、逆变式、波形控制式、脉冲或非脉冲式等的焊接电源都可以装到机器人上作电弧焊。由于机器人控制柜采用数字控制,而焊接电源多为模拟控制,所以需要在焊接电源与控制柜之间加一个接口。

  近年来,国外机器人生产厂都有自己特定的配套焊接设备,这些焊接设备内已经播人相应的接口板、所以上图的弧焊机器人系统中并没有附加接口箱。

  应该指出,在弧焊机器人工作周期中电弧时间所占的比例较大,因此在选择焊接电源时,一般应按持续率100%来确定电源的容量。

  1、MIG焊(熔化极气体保护电弧焊):

  这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬嘴喷出的气体来保护电弧进行焊接的。惰性气体一般为氩气。

  2、TIG焊(惰性气体钨极保护焊):

  TIG焊的热源为直流电弧,工作电压为10~15伏,但电流可达300安培,把工件作为正极,焊炬中的钨极作为负极。 惰性气体一般为氩气。

  3、MAG焊(熔化极活性气体保护焊):

  熔化极活性气体保护焊是采用在惰性气体中加入一定量的活性气体,如O2、CO2等作为保护气体。

  四、弧焊系统说明

  弧焊过程比点焊过程要复杂得多,工具中心点(TCP),也就是焊丝端头的运动轨迹、焊枪姿态、焊接参数都要求精确控制。所以,弧焊用机器人除了前面所述的一般功能外,还必须具备一些适合弧焊要求的功能。

  从理论上讲,5轴机器人就可以用于电弧焊,但是对复杂形状的焊缝,用5个轴的机器人会有困难。因此,除非焊缝比较简单,否则应尽量选用6轴机器人。

  弧焊机器人在作“之”字形拐角焊或小直径圆焊缝焊接时,其轨迹应能贴近示教的轨迹之外,还应具备不同摆动样式的软件功能,供编程时选用,以便作摆动焊,而且摆动在每一周期中的停顿点处,机器人也应自动停止向前运动,以满足工艺要求。此外,还应有接触寻位、自动寻找焊缝起点位置、电弧跟踪及自动再引弧功能等。

  五、调试中电弧焊电流

  调试中电弧焊电流大小的判断:

  1、电流小:

  焊道窄,熔深浅,易形成过高,未熔合,未焊透,夹渣,气孔,焊条粘连,断弧,不引弧等等;

  2、电流大:

  焊道宽,熔深大,咬边,烧穿,缩孔,飞溅大,过烧,变形大,焊瘤等等。

  六、离线编程

  弧焊机器人系统多采用离线编程

  离线编程可节省超过40%的现场调试时间,如果再结合Virtual Arc等虚拟弧焊软件,可以根拒焊接电流,焊丝,焊接速度,脉冲形式,机器人姿态等模拟出焊接熔深,提前预知焊接状态,减少大量的调试工作,提高整个机器人焊接系统的节拍及质量。

  七、系统的两个技术

  弧焊机器人系统两个关键技术:

  1、协调控制技术:

  控制多机器人及变位机协调运动,既能保持焊枪和工件的相对姿态以满足焊接工艺的要求,又能避免焊枪和工件的碰撞,还要控制各机器人焊接区域的变形影响。

  2、精确焊缝轨迹跟踪技术:

  结合激光传感器和视觉传感器离线工作方式的优点,采用激光传感器实现焊接过程中的焊缝跟踪,提升焊接机器人对复杂工件进行焊接的柔性和适应性,结合视觉传感器离线观察获得焊缝跟踪的残余偏差,基于偏差统计获得补偿数据并进行机器人运动轨迹的修正,在各种工况下都能获得最佳的焊接质量。

  八、焊接电源

  1、焊接电源

  熔化极气体保护焊通常采用直流焊接电源,目前生产中使用较多的是弧焊整流器式直流电源。近年来,逆变式弧焊电源发展也较快。焊接电源的额定功率取决于各种用途所要求的电流范围。熔化极气体保护焊所要求的电流通常在100~500A之间,电源的负载持续率(也称暂载率)在60%~100%范围,空载电压在55~85V范围。

  2、焊接电源的外特性

  熔化极气体保护焊的焊接电源按外特性类型可分为三种:平特性(恒压)、陡降特性(恒流)和缓降特性。

  (1)平特性

  当保护气体为惰性气体(如纯Ar)、富Ar和氧化性气体(如CO2),焊丝直径小于φ1.6mm时,在生产中广泛采用平特性电源。这是因为平特性电源配合等速送丝机具有许多优点,可通过改变电源空载电压调节电弧电压,通过改变送丝速度来调节焊接电流,故焊接规范调节比较方便。使用这种外特性电源,当弧长变化时可以有较强的自调节作用;同时短路电流较大,引弧比较容易。实际使用的平特性电源其外特性并不都是真正平直的,而是带有一定的下倾,其下倾率一般不大于5V/100A,但仍具有上述优点。

  (2)下降特性

  当焊丝直径较粗(大于φ2mm),生产中一般采用下降特性电源,配用变速迭丝系统。由于焊丝直径较粗,电弧的自身调节作用较弱,弧长变化后恢复速度较慢,单靠电弧的自身调节作用难以保证稳定的焊接过程。因此也象一般埋弧焊那样需要外加弧压反馈电路,将弧压(弧长)的变化及时反馈送到送丝控制电路,调节送丝速度,使弧长能及时恢复。

  3、电源输出参数的调节

  熔化极气体保护焊电源的主要技术参数有:

  (1)输入电压(相数、频率、电压)

  (2)额定焊接电流范围

  (3)额定负载持续率(%)

  (4)空载电压

  (5)负载电压范围

  (6)电源外特性曲线类型(平特性、缓降外特性、陡降外特性)

  通常要根据焊接工艺的需要确定对焊接电源技术参数的要求,然后选用能满足要求的焊接电源。

  (1)电弧电压

  电弧电压是指焊丝端头和工件之间的电压降,不是电源电压表指示的电压(电源输出端的电压)。电弧电压的预调节是通过调节电源的空载电压或电源外特性斜率来实现的。平特性电源主要通过调节空载电压来实现电弧电压调节。缓降或陡降特性电源主要通过调节外特性斜率来实现电弧电压调节。

  (2)焊接电流

  平特性电源的电流的大小主要通过调节送丝速度来实现,有时也适当调节空载电压来进行电流的少量调节。对于缓降或陡降特性电源则主要通过调节电源外特性斜率来实现。

  九、送丝系统

  送丝系统通常是由送丝机(包括电动机、减速器、校直轮、送丝轮、送丝软管、焊丝盘等)组成。盘绕在焊丝盘上的焊丝经过校直轮和送丝轮送往焊枪。根据送丝方式的不同,可分为四种类型:

  (1)推丝式

  推丝式是焊丝被送丝轮推送经过软管而达到焊枪,是半自动熔化极气保护焊的主要送丝方式。

  这种送丝方式的焊枪结构简单、轻便、操作维修都比较方便,但焊丝送进的阻力较大。随着软管的加长,送丝稳定性变差,一般送丝软管长为3.5~4m左右。

  (2)拉丝式

  拉丝式可分为三种形式:

  1)将焊丝盘和焊枪分开,两者通过送丝软管连接;

  2)将焊丝盘直接安装在焊枪上;

  3)焊丝盘与焊枪分开,送丝电动机也与焊枪分开。

  前两种都适用于细丝半自动焊,但前一种操作比较方便,第三种送丝方式可用于自动熔化极气体保护焊。

  (3)推拉丝式

  这种送丝方式的送丝软管最长可以加长到15m左右,扩大了半自动焊的操作距离。焊丝前进时既靠后面的推力,又靠前边的拉力,利用两个力的合力来克服焊丝在软管中的阻力。推拉丝两个动力在调试过程中要有一定配合,尽量做到同步,但以拉为主。焊丝送进过程中,始终要保持焊丝在软管中处于拉直状态。

  这种送丝方式常被用于半自动熔化极气体保护焊。

  (4)行星式(线式)

  行星式送丝系统是根据“轴向固定的旋转螺母能轴向送进螺杆”的原理设计而成的。

  三个互为120°的滚轮交叉地安装在一块底座上,组成一个驱动盘。驱动盘相当于螺母,通过三个滚轮中间的焊丝相当于螺杆,三个滚轮与焊丝之间有一个预先调定的螺旋角。

  当电动机的主轴带动驱动盘旋转时,三个滚轮即向焊丝施加一个轴向的推力,将焊丝往前推送。送丝过程中,三个滚轮一方面围绕焊丝公转,另一方面又绕着自己的轴自转。调节电动机的转速即可调节焊丝送进速度。

  这种送丝机构可一级一级串联起来而成为所谓线式送丝系统,使送丝距离更长(可达60m)。

  若采用一级传送,可传送7~8m。这种线式送丝方式适合于输送小直径焊丝(φ0.8~1.2mm)和钢焊丝,以及长距离送丝。

  十、焊枪

  熔化极气体保护焊的焊枪分为半自动焊焊枪(手握式)和自动焊焊枪(安装在机械装置上)。

  在焊枪内部装有导电嘴(紫铜或铬铜等)。焊枪还有一个向焊接区输送保护气体的通道和喷嘴。喷嘴和导电嘴根据需要都可方便地更换。

  此外,焊接电流通过导电嘴等部件时产生的电阻热和电弧辐射热一起,会使焊枪发热,故需要采取一定的措施冷却焊枪。冷却方式空气冷却、内部循环水冷却,或两种方式相结合。对于空气冷却焊枪,在CO2气体保护焊时,断续负载下一般可使用高达600A的电流。但是,在使用氩气或氦气保护焊时,通常只限于200A电流。

读完这篇文章后,您心情如何?
0
0
0
0
0
0
0
0
本文网址: